

International conference 6–9 JUNE 2023 Espace Prouvé, Nancy, France Vibration emission of grinders: experiments and model

Quentin PIERRON¹

Institut National de Recherche et de Sécurité pour la Prévention des Accidents du Travail et des Maladies Professionnelles (INRS)

quentin.pierron@inrs.fr

Summary

- 1. Introduction
- 2. First experimental tests: according to the standard EN 60745-2-3
- 3. Second experimental tests: hanged grinder
- 4. Numerical Model
- 5. Discussion

ANC

Introduction

between 2005-2014)

To compare vibration emission of angle grinder ➤ promote less vibrating machine

A

Real condition

Standard EN 60745-2-3

First experimental tests: according to the standard EN 60745-2-3

First experimental tests: according to the standard EN 60745-2-3

Metabo W12-125 Quick

11

5 PCB triaxle piezoelectric accelerometers

First experimental tests: according to the standard EN 60745-2-3

Note: error bars represents minimal and maximal values for 7 measurements

Second experimental tests: hanged grinder

Experimental tests: frequency analysis

Second experimental tests: analysis of motion

grinder measured by 3D 120 scan (amplitude at 1st harmonic, m/s²) 00 00 00 00 00 X Y Z Acceleration 11 Х 0 Rear Bottom in Rear Top Front Right Front Left Accelerometer (axis of the disc) HAND-ARM VIBRATION 6-9 JUNE 2023 11

Location and direction of

accelerometers on

Second experimental tests: analysis of motion

 $\vec{\Omega}$: Instantaneous angular velocity (rad/s) According that :

$$\vec{v}_B - \vec{v}_A = \overrightarrow{BA} \wedge \overrightarrow{\Omega}$$

7

Axis

for a rigid body, $\vec{\Omega}$ obtained by minimizing the matrix form of the previous formula with 4 complex amplitudes at 1st harmonic of velocities Position and orientation of accelerometers on grinder measured by 3D scan

rad/s)

narmonic,

Angular (Amplitude at 1 1,2

1,0

0,8

0,6

0,2

0,0

Х

velocity arOmega

(axis of the disc) HAND-ARM VIBRATION 6-9 JUNE 2023

Х

13

Numerical Model

М	Point on the running grinder	\vec{e}_r	$-\overrightarrow{CB}/\ \overrightarrow{CB}\ $, rotating vector in the plane of the disk
С	Center of the disk	bal	Imbalance of the perforated disk
G _{woD}	Center of mass of the grinder w/o the disk	m_T	Total mass of the system
\vec{b}	$=\overrightarrow{CG_{woD}}$	m_G	Mass of the grinder w/o the disk
ω	Rotational speed of the disk	\overline{I}_T	Sum of the inertia tensor of rigid bodies written in their center of mass
$\overrightarrow{\Omega}$	Angular velocity		

Equations of motion of the grinder (steady-state, first harmonic, after simplifications)

 $(\vec{a}_M, \vec{\Omega})$ and \vec{e}_r represent complex amplitude at the frequency $\omega/2\pi$)

Acceleration of a point M on the running grinder

Angular velocity of the grinder

$$\vec{a}_{M} = \frac{\mathrm{bal}}{m_{T}} \omega^{2} \vec{e}_{r} + j\omega \vec{\Omega} \wedge \left(\overline{CM} - \frac{m_{G}}{m_{T}} \vec{b} \right)$$
$$\bar{I}_{T} \vec{\Omega} = j\omega m_{G} \frac{\mathrm{bal}}{m_{T}} \vec{b} \wedge \vec{e}_{r}$$

In the coordinate system linked to the grinder
$$(\vec{e}'_x, \vec{e}'_y, \vec{e}'_z)$$
, we can write:
 $\vec{e}_r \equiv \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \vec{b} \equiv \begin{pmatrix} b_x \\ b_y \sim 0 \\ b_z \end{pmatrix}, \ \vec{I}_T \equiv \begin{pmatrix} l_{xx} & l_{xy} & l_{xz} \\ l_{xy} & l_{yy} & l_{yz} \\ l_{xz} & l_{yz} & l_{zz} \end{pmatrix}$
and deduce $\vec{\Omega}$ and \vec{a}_M .

14

Numerical Model Experimental ahv 11 Experimental (only 1st harmonic) (amplitude of weighted-frequency r.m.s. 10 Model 9 Model (w/o rotation) 8 /S²) Acceleration) E acceleration, 6 5 Rear/Bottom Rear/Top Front/Right Front/Left Accelerometer

Inertia moment tensor $\overline{\overline{I}}_B$ and center of mass G_{woD} : provided by the manufacturer from their detailed CAD

Figure 3: Frequency-weighted root-mean-square acceleration a_{hv} measured during test codes and tests with the hanging grinder. The vertical black lines indicate standard deviation.

Discussion: ways to reduce vibration

Acceleration of a point M on the running grinder

$$\vec{a}_M \approx \omega^2 \frac{\text{bal}}{m_T} \left[\vec{e}_r - \bar{\bar{I}}_T^{-1} \left(\overrightarrow{CG_{woD}} \land \vec{e}_r \right) \land \overrightarrow{G_{woD}} \vec{M} \right]$$

- 1. reduce rotational speed of the disc ω ,
- 2. increase mass of the grinder m_T ,
- 3. increase rotational inertia $\overline{\overline{I}}_T$ by sharing mass far from mass center,
- 4. bring the center of mass G_{woD} closer to the hands or the center of disc C
- use flexible part → model can be used to design flexible part

М	Point on the running grinder	<i>ē</i> _r	$-\overrightarrow{CB}/ \overrightarrow{CB} $, rotating vector in the plane of the disk
С	Center of the disk	bal	Imbalance of the perforated disk
G _{woD}	Center of mass of the grinder w/o the disk	m_T	Total mass of the system
ω	Rotational speed of the disk	\bar{I}_T	Sum of the inertia tensor of rigid bodies written in their center of mass

17